If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+6y-1=0
a = 7; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·7·(-1)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-8}{2*7}=\frac{-14}{14} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+8}{2*7}=\frac{2}{14} =1/7 $
| (5x-1)=(9x+2) | | n/7=21/35 | | ((y)/3)-((5y)/6)=-((1)/2) | | -×+5x=48 | | -6=n/2-1- | | -2x+14=-5x-1 | | 6.5x=-58.5 | | 5(3x+2)=17 | | 2x+-2/3x=4 | | y/3-5y/6=-(1/2) | | 7x+7(1+5x)=-203 | | -8(x+2)+4x+6=7x+11 | | 2^x+2=1/32 | | 64^x=8^3x-6 | | 3u2+13u+14=0 | | U4=6y-8 | | 4=2x-x+7 | | 27-(3x)=8-x | | 2x-2/3x=4 | | 4y/9=5y-7 | | 27-3x=8-x | | 5(4x+2)=-10 | | 20=1-2x+5 | | c^2-17=0 | | 2x-3x÷2=4 | | (-1/3)+x=(-5/24) | | 5x-29=-7x-20 | | -4(y-1/7)=-5y= | | -1/3+x=-5/24 | | 4.25+3s=20.81 | | 3x*9=2.5x+14 | | 5w+14=109 |